
TrueSkill Documentation
Release 0.4.3

Heungsub Lee

September 24, 2015

Contents

1 What’s TrueSkill? 3

2 Installing 5

3 Learning 7
3.1 Rating, the model for skill . 7
3.2 Head-to-head (1 vs. 1) match rule . 7
3.3 Other match rules . 8
3.4 Partial play . 9
3.5 Backends . 9

4 API 11
4.1 TrueSkill objects . 11
4.2 Default values . 13
4.3 Head-to-head shortcuts . 13
4.4 Functions for the global environment . 14
4.5 Draw probability helpers . 15
4.6 Mathematical statistics backends . 15

5 Changelog 17
5.1 Version 0.4.1 . 17
5.2 Version 0.4 . 17
5.3 Version 0.3.1 . 17
5.4 Version 0.3 . 17
5.5 Version 0.2.1 . 18
5.6 Version 0.2 . 18
5.7 Version 0.1.4 . 18
5.8 Version 0.1.3 . 18
5.9 Version 0.1.1 . 18
5.10 Version 0.1 . 18

6 Further more 19

7 Licensing and Author 21

Python Module Index 23

i

ii

TrueSkill Documentation, Release 0.4.3

the video game rating system

Contents 1

TrueSkill Documentation, Release 0.4.3

2 Contents

CHAPTER 1

What’s TrueSkill?

TrueSkill is a rating system among game players. It was developed by Microsoft Research and has been used on
Xbox LIVE for ranking and matchmaking service. This system quantifies players’ TRUE skill points by the Bayesian
inference algorithm. It also works well with any type of match rule including N:N team game or free-for-all.

This project is a Python package which implements the TrueSkill rating system:

from trueskill import Rating, quality_1vs1, rate_1vs1
alice, bob = Rating(25), Rating(30) # assign Alice and Bob's ratings
if quality_1vs1(alice, bob) < 0.50:

print('This match seems to be not so fair')
alice, bob = rate_1vs1(alice, bob) # update the ratings after the match

3

http://research.microsoft.com/en-us/projects/trueskill
http://research.microsoft.com/
http://www.xbox.com/live

TrueSkill Documentation, Release 0.4.3

4 Chapter 1. What’s TrueSkill?

CHAPTER 2

Installing

The package is available in PyPI. To install it in your system, use easy_install:

$ easy_install trueskill

Or check out developement version:

$ git clone git://github.com/sublee/trueskill.git

5

http://pypi.python.org/pypi/trueskill

TrueSkill Documentation, Release 0.4.3

6 Chapter 2. Installing

CHAPTER 3

Learning

3.1 Rating, the model for skill

In TrueSkill, rating is a Gaussian distribution which starts from 𝒩 (25, 25
3

2
). 𝜇 is an average skill of player, and 𝜎 is a

confidence of the guessed rating. A real skill of player is between 𝜇± 2𝜎 with 95% confidence.

>>> from trueskill import Rating
>>> Rating() # use the default mu and sigma
trueskill.Rating(mu=25.000, sigma=8.333)

If some player’s rating is higher 𝛽 than another player’s, the player may have about 75.6% of chance to beat the other
player. The default value of 𝛽 is 25

6 .

Ratings will approach real skills through few times of the TrueSkill’s Bayesian inference algorithm. How many
matches TrueSkill needs to estimate real skills? It depends on the game rule. See the below table:

Rule Matches
16P free-for-all 3
8P free-for-all 3
4P free-for-all 5
2P free-for-all 12
2:2:2:2 10
4:4:4:4 20
4:4 46
8:8 91

3.2 Head-to-head (1 vs. 1) match rule

Most competition games follows 1:1 match rule. If your game does, just use _1vs1 shortcuts containing
rate_1vs1() and quality_1vs1(). These are very easy to use.

First of all, we need 2 Rating objects:

>>> r1 = Rating() # 1P's skill
>>> r2 = Rating() # 2P's skill

Then we can guess match quality which is equivalent with draw probability of this match using quality_1vs1():

>>> print('{:.1%} chance to draw'.format(quality_1vs1(r1, r2)))
44.7% chance to draw

7

TrueSkill Documentation, Release 0.4.3

After the game, TrueSkill recalculates their ratings by the game result. For example, if 1P beat 2P:

>>> new_r1, new_r2 = rate_1vs1(r1, r2)
>>> print(new_r1)
trueskill.Rating(mu=29.396, sigma=7.171)
>>> print(new_r2)
trueskill.Rating(mu=20.604, sigma=7.171)

Mu value follows player’s win/draw/lose records. Higher value means higher game skill. And sigma value follows the
number of games. Lower value means many game plays and higher rating confidence.

So 1P, a winner’s skill grew up from 25 to 29.396 but 2P, a loser’s skill shrank to 20.604. And both sigma values
became narrow about same magnitude.

Of course, you can also handle a tie game with drawn=True:

>>> new_r1, new_r2 = rate_1vs1(r1, r2, drawn=True)
>>> print(new_r1)
trueskill.Rating(mu=25.000, sigma=6.458)
>>> print(new_r2)
trueskill.Rating(mu=25.000, sigma=6.458)

3.3 Other match rules

There are many other match rules such as N:N team match, N:N:N multiple team match, N:M unbalanced match, free-
for-all (Player vs. All), and so on. Mostly other rating systems cannot work with them but TrueSkill does. TrueSkill
accepts any types of matches.

We should arrange ratings into a group by their team:

>>> r1 = Rating() # 1P's skill
>>> r2 = Rating() # 2P's skill
>>> r3 = Rating() # 3P's skill
>>> t1 = [r1] # Team A contains just 1P
>>> t2 = [r2, r3] # Team B contains 2P and 3P

Then we can calculate the match quality and rate them:

>>> print('{:.1%} chance to draw'.format(quality([t1, t2])))
13.5% chance to draw
>>> (new_r1,), (new_r2, new_r3) = rate([t1, t2], ranks=[0, 1])
>>> print(new_r1)
trueskill.Rating(mu=33.731, sigma=7.317)
>>> print(new_r2)
trueskill.Rating(mu=16.269, sigma=7.317)
>>> print(new_r3)
trueskill.Rating(mu=16.269, sigma=7.317)

If you want to describe other game results, set the ranks argument like the below examples:

• A drawn game – ranks=[0, 0]

• Team B won not team A – ranks=[1, 0] (Lower rank is better)

Additionally, here are varied patterns of rating groups. All variables which start with r are Rating objects:

• N:N team match – [(r1, r2, r3), (r4, r5, r6)]

• N:N:N multiple team match – [(r1, r2), (r3, r4), (r5, r6)]

8 Chapter 3. Learning

TrueSkill Documentation, Release 0.4.3

• N:M unbalanced match – [(r1,), (r2, r3, r4)]

• Free-for-all – [(r1,), (r2,), (r3,), (r4,)]

3.4 Partial play

Let’s assume that there are 2 teams which each has 2 players. The game was for a hour but the one of players on the
first team entered the game at 30 minutes later.

If some player wasn’t present for the entire duration of the game, use the concept of “partial play” by weights
parameter. The above situation can be described by the following weights:

• 1P on team A – 1.0 = Full time
• 2P on team A – 0.5 = 30

60 minutes
• 3P on team B – 1.0
• 4P on team B – 1.0

As a code with a 2-dimensional list:

set each weights to 1, 0.5, 1, 1
rate([(r1, r2), (r3, r4)], weights=[(1, 0.5), (1, 1)])
quality([(r1, r2), (r3, r4)], weights=[(1, 0.5), (1, 1)])

Or with a dictionary:

set a weight of 2nd player in 1st team to 0.5, otherwise leave as 1
rate([(r1, r2), (r3, r4)], weights={(0, 1): 0.5})
quality([(r1, r2), (r3, r4)], weights={(0, 1): 0.5})

3.5 Backends

The TrueSkill algorithm uses Φ, the cumulative distribution function; 𝜑, the probability density function; and Φ−1, the
inverse cumulative distribution function. But standard mathematics library doesn’t provide the functions. Therefore
this package implements them.

Meanwhile, there are third-party libraries which implement the functions. You may want to use another implementa-
tion because that’s more expert. Then set backend option of TrueSkill to the backend you chose:

>>> TrueSkill().cdf # internal implementation
<function cdf at ...>
>>> TrueSkill(backend='mpmath').cdf # mpmath.ncdf
<bound method MPContext.f_wrapped of <mpmath.ctx_mp.MPContext object at ...>>

Here’s the list of the available backends:

• None – the internal implementation. (Default)

• “mpmath” – requires mpmath installed.

• “scipy” – requires scipy installed.

Note: When winners have too lower rating than losers, TrueSkill.rate() will raise FloatingPointError.
In this case, you need higher floating-point precision. The mpmath library offers flexible floating-point precision. You
can solve the problem with mpmath as a backend and higher precision setting.

3.4. Partial play 9

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Probability_density_function
https://code.google.com/p/mpmath
http://www.scipy.org/

TrueSkill Documentation, Release 0.4.3

10 Chapter 3. Learning

CHAPTER 4

API

4.1 TrueSkill objects

class trueskill.Rating(mu=None, sigma=None)
Represents a player’s skill as Gaussian distrubution.

The default mu and sigma value follows the global environment’s settings. If you don’t want to use the global,
use TrueSkill.create_rating() to create the rating object.

Parameters

• mu – the mean.

• sigma – the standard deviation.

mu
A property which returns the mean.

sigma
A property which returns the the square root of the variance.

class trueskill.TrueSkill(mu=25.0, sigma=8.333333333333334, beta=4.166666666666667,
tau=0.08333333333333334, draw_probability=0.1, backend=None)

Implements a TrueSkill environment. An environment could have customized constants. Every games have not
same design and may need to customize TrueSkill constants.

For example, 60% of matches in your game have finished as draw then you should set draw_probability
to 0.60:

env = TrueSkill(draw_probability=0.60)

For more details of the constants, see The Math Behind TrueSkill by Jeff Moser.

Parameters

• mu – the initial mean of ratings.

• sigma – the initial standard deviation of ratings. The recommended value is a third of mu.

• beta – the distance which guarantees about 75.6% chance of winning. The recommended
value is a half of sigma.

• tau – the dynamic factor which restrains a fixation of rating. The recommended value is
sigma per cent.

• draw_probability – the draw probability between two teams. It can be a float or
function which returns a float by the given two rating (team performance) arguments and

11

http://bit.ly/trueskill-math

TrueSkill Documentation, Release 0.4.3

the beta value. If it is a float, the game has fixed draw probability. Otherwise, the draw
probability will be decided dynamically per each match.

• backend – the name of a backend which implements cdf, pdf, ppf. See
trueskill.backends for more details. Defaults to None.

create_rating(mu=None, sigma=None)
Initializes new Rating object, but it fixes default mu and sigma to the environment’s.

>>> env = TrueSkill(mu=0, sigma=1)
>>> env.Rating()
trueskill.Rating(mu=0.000, sigma=1.000)

expose(rating)
Returns the value of the rating exposure. It starts from 0 and converges to the mean. Use this as a sort key
in a leaderboard:

leaderboard = sorted(ratings, key=env.expose, reverse=True)

New in version 0.4.

make_as_global()
Registers the environment as the global environment.

>>> env = TrueSkill(mu=50)
>>> Rating()
trueskill.Rating(mu=25.000, sigma=8.333)
>>> env.make_as_global()
trueskill.TrueSkill(mu=50.000, ...)
>>> Rating()
trueskill.Rating(mu=50.000, sigma=8.333)

But if you need just one environment, setup() is better to use.

quality(rating_groups, weights=None)
Calculates the match quality of the given rating groups. A result is the draw probability in the association:

env = TrueSkill()
if env.quality([team1, team2, team3]) < 0.50:

print('This match seems to be not so fair')

Parameters

• rating_groups – a list of tuples or dictionaries containing Rating objects.

• weights – weights of each players for “partial play”.

New in version 0.2.

rate(rating_groups, ranks=None, weights=None, min_delta=0.0001)
Recalculates ratings by the ranking table:

env = TrueSkill() # uses default settings
create ratings
r1 = env.create_rating(42.222)
r2 = env.create_rating(89.999)
calculate new ratings
rating_groups = [(r1,), (r2,)]
rated_rating_groups = env.rate(rating_groups, ranks=[0, 1])
save new ratings
(r1,), (r2,) = rated_rating_groups

12 Chapter 4. API

TrueSkill Documentation, Release 0.4.3

rating_groups is a list of rating tuples or dictionaries that represents each team of the match. You
will get a result as same structure as this argument. Rating dictionaries for this may be useful to choose
specific player’s new rating:

load players from the database
p1 = load_player_from_database('Arpad Emrick Elo')
p2 = load_player_from_database('Mark Glickman')
p3 = load_player_from_database('Heungsub Lee')
calculate new ratings
rating_groups = [{p1: p1.rating, p2: p2.rating}, {p3: p3.rating}]
rated_rating_groups = env.rate(rating_groups, ranks=[0, 1])
save new ratings
for player in [p1, p2, p3]:

player.rating = rated_rating_groups[player.team][player]

Parameters

• rating_groups – a list of tuples or dictionaries containing Rating objects.

• ranks – a ranking table. By default, it is same as the order of the rating_groups.

• weights – weights of each players for “partial play”.

• min_delta – each loop checks a delta of changes and the loop will stop if the delta is
less then this argument.

Returns recalculated ratings same structure as rating_groups.

Raises FloatingPointError occurs when winners have too lower rating than losers.
higher floating-point precision couls solve this error. set the backend to “mpmath”.

New in version 0.2.

4.2 Default values

trueskill.MU = 25.0
Default initial mean of ratings.

trueskill.SIGMA = 8.333333333333334
Default initial standard deviation of ratings.

trueskill.BETA = 4.166666666666667
Default distance that guarantees about 75.6% chance of winning.

trueskill.TAU = 0.08333333333333334
Default dynamic factor.

trueskill.DRAW_PROBABILITY = 0.1
Default draw probability of the game.

4.3 Head-to-head shortcuts

trueskill.rate_1vs1(rating1, rating2, drawn=False, min_delta=0.0001, env=None)
A shortcut to rate just 2 players in a head-to-head match:

4.2. Default values 13

TrueSkill Documentation, Release 0.4.3

alice, bob = Rating(25), Rating(30)
alice, bob = rate_1vs1(alice, bob)
alice, bob = rate_1vs1(alice, bob, drawn=True)

Parameters

• rating1 – the winner’s rating if they didn’t draw.

• rating2 – the loser’s rating if they didn’t draw.

• drawn – if the players drew, set this to True. Defaults to False.

• min_delta – will be passed to rate().

• env – the TrueSkill object. Defaults to the global environment.

Returns a tuple containing recalculated 2 ratings.

New in version 0.2.

trueskill.quality_1vs1(rating1, rating2, env=None)
A shortcut to calculate the match quality between just 2 players in a head-to-head match:

if quality_1vs1(alice, bob) < 0.50:
print('This match seems to be not so fair')

Parameters

• rating1 – the rating.

• rating2 – the another rating.

• env – the TrueSkill object. Defaults to the global environment.

New in version 0.2.

4.4 Functions for the global environment

trueskill.global_env()
Gets the TrueSkill object which is the global environment.

trueskill.setup(mu=25.0, sigma=8.333333333333334, beta=4.166666666666667,
tau=0.08333333333333334, draw_probability=0.1, backend=None, env=None)

Setups the global environment.

Parameters env – the specific TrueSkill object to be the global environment. It is optional.

>>> Rating()
trueskill.Rating(mu=25.000, sigma=8.333)
>>> setup(mu=50)
trueskill.TrueSkill(mu=50.000, ...)
>>> Rating()
trueskill.Rating(mu=50.000, sigma=8.333)

trueskill.rate(rating_groups, ranks=None, weights=None, min_delta=0.0001)
A proxy function for TrueSkill.rate() of the global environment.

New in version 0.2.

14 Chapter 4. API

TrueSkill Documentation, Release 0.4.3

trueskill.quality(rating_groups, weights=None)
A proxy function for TrueSkill.quality() of the global environment.

New in version 0.2.

trueskill.expose(rating)
A proxy function for TrueSkill.expose() of the global environment.

New in version 0.4.

4.5 Draw probability helpers

trueskill.calc_draw_probability(draw_margin, size, env=None)
Calculates a draw-probability from the given draw_margin.

Parameters

• draw_margin – the draw-margin.

• size – the number of players in two comparing teams.

• env – the TrueSkill object. Defaults to the global environment.

trueskill.calc_draw_margin(draw_probability, size, env=None)
Calculates a draw-margin from the given draw_probability.

Parameters

• draw_probability – the draw-probability.

• size – the number of players in two comparing teams.

• env – the TrueSkill object. Defaults to the global environment.

4.6 Mathematical statistics backends

trueskill.backends.choose_backend(backend)
Returns a tuple containing cdf, pdf, ppf from the chosen backend.

>>> cdf, pdf, ppf = choose_backend(None)
>>> cdf(-10)
7.619853263532764e-24
>>> cdf, pdf, ppf = choose_backend('mpmath')
>>> cdf(-10)
mpf('7.6198530241605255e-24')

New in version 0.3.

trueskill.backends.available_backends()
Detects list of available backends. All of defined backends are None – internal implementation, “mpmath”,
“scipy”.

You can check if the backend is available in the current environment with this function:

if 'mpmath' in available_backends():
mpmath can be used in the current environment
setup(backend='mpmath')

New in version 0.3.

4.5. Draw probability helpers 15

TrueSkill Documentation, Release 0.4.3

16 Chapter 4. API

CHAPTER 5

Changelog

5.1 Version 0.4.1

Released on Jun 6th 2013.

• Deprecates dynamic_draw_probability().

5.2 Version 0.4

Released on Mar 25th 2013.

• Supports dynamic draw probability.

• Replaces Rating.exposure() with TrueSkiil.expose(). Because the TrueSkill settings have to
adjust a fomula to calculate an exposure.

• Deprecates head-to-head shortcut methods in TrueSkill. The top-level shortcut functions are still alive.

5.3 Version 0.3.1

Released on Mar 6th 2013.

Raises FloatingPointError instead of ValueError (math domain error) for a problem similar to issue #5 but
with more extreme input.

5.4 Version 0.3

Released on Mar 5th 2013.

TrueSkill got a new option backend to choose cdf, pdf, ppf implementation.

When winners have too lower rating than losers, TrueSkill.rate() will raise FloatingPointError if the
backend is None or “scipy”. But from this version, you can avoid the problem with “mpmath” backend. This was
reported at issue #5.

17

https://github.com/sublee/trueskill/issues/5
https://github.com/sublee/trueskill/issues/5

TrueSkill Documentation, Release 0.4.3

5.5 Version 0.2.1

Released on Dec 6th 2012.

Fixes a printing bug on TrueSkill.quality().

5.6 Version 0.2

Released on Nov 30th 2012.

• Implements “Partial play”.

• Works well in many Python versions, 2.5, 2.6, 2.7, 3.1, 3.2, 3.3 and many interpreters, CPython, Jython, PyPy.

• Supports that using dictionaries as a rating_group to choose specific player’s rating simply.

• Adds shorcut functions for 2 players individual match, the most usage: rate_1vs1() and
quality_1vs1(),

• TrueSkill.transform_ratings() is now called TrueSkill.rate().

• TrueSkill.match_quality() is now called TrueSkill.quality().

5.7 Version 0.1.4

Released on Oct 5th 2012.

Fixes ZeroDivisionError issue. For more detail, see issue#3. Thanks to Yunwon Jeong and Nikos Kokolakis.

5.8 Version 0.1.3

Released on Mar 10th 2012.

Improves the match quality performance.

5.9 Version 0.1.1

Released on Jan 12th 2012.

Fixes an error in “A” matrix of the match quality algorithm.

5.10 Version 0.1

First public preview release.

18 Chapter 5. Changelog

http://jython.org/
http://pypy.org/
https://github.com/sublee/trueskill/issues/3
https://github.com/youknowone
https://github.com/konikos

CHAPTER 6

Further more

There’s the list for users. To subscribe the list, just send a mail to trueskill@librelist.com.

If you want to more details of the TrueSkill algorithm, see also:

• TrueSkill: A Bayesian Skill Rating System by Herbrich, Ralf and Graepel, Thore

• TrueSkill Calcurator by Microsoft Research

• Computing Your Skill by Jeff Moser

• The Math Behind TrueSkill by Jeff Moser

19

mailto:trueskill@librelist.com
http://research.microsoft.com/apps/pubs/default.aspx?id=67956
http://atom.research.microsoft.com/trueskill/rankcalculator.aspx
http://bit.ly/moserware-trueskill
http://bit.ly/trueskill-math

TrueSkill Documentation, Release 0.4.3

20 Chapter 6. Further more

CHAPTER 7

Licensing and Author

This TrueSkill package is opened under the BSD license but the TrueSkill™ brand is not. Microsoft permits only
Xbox Live games or non-commercial projects to use TrueSkill™. If your project is commercial, you should find
another rating system. See LICENSE for the details.

I’m Heungsub Lee, a game developer. Any regarding questions or patches are welcomed.

21

http://en.wikipedia.org/wiki/BSD_licenses
http://research.microsoft.com/en-us/projects/trueskill
https://github.com/sublee/trueskill/blob/master/LICENSE
http://subl.ee/

TrueSkill Documentation, Release 0.4.3

22 Chapter 7. Licensing and Author

Python Module Index

t
trueskill.backends, 15

23

TrueSkill Documentation, Release 0.4.3

24 Python Module Index

Index

A
available_backends() (in module trueskill.backends), 15

B
BETA (in module trueskill), 13

C
calc_draw_margin() (in module trueskill), 15
calc_draw_probability() (in module trueskill), 15
choose_backend() (in module trueskill.backends), 15
create_rating() (trueskill.TrueSkill method), 12

D
DRAW_PROBABILITY (in module trueskill), 13

E
expose() (in module trueskill), 15
expose() (trueskill.TrueSkill method), 12

G
global_env() (in module trueskill), 14

M
make_as_global() (trueskill.TrueSkill method), 12
MU (in module trueskill), 13
mu (trueskill.Rating attribute), 11

Q
quality() (in module trueskill), 14
quality() (trueskill.TrueSkill method), 12
quality_1vs1() (in module trueskill), 14

R
rate() (in module trueskill), 14
rate() (trueskill.TrueSkill method), 12
rate_1vs1() (in module trueskill), 13
Rating (class in trueskill), 11

S
setup() (in module trueskill), 14

SIGMA (in module trueskill), 13
sigma (trueskill.Rating attribute), 11

T
TAU (in module trueskill), 13
TrueSkill (class in trueskill), 11
trueskill.backends (module), 15

25

	What's TrueSkill?
	Installing
	Learning
	Rating, the model for skill
	Head-to-head (1 vs. 1) match rule
	Other match rules
	Partial play
	Backends

	API
	TrueSkill objects
	Default values
	Head-to-head shortcuts
	Functions for the global environment
	Draw probability helpers
	Mathematical statistics backends

	Changelog
	Version 0.4.1
	Version 0.4
	Version 0.3.1
	Version 0.3
	Version 0.2.1
	Version 0.2
	Version 0.1.4
	Version 0.1.3
	Version 0.1.1
	Version 0.1

	Further more
	Licensing and Author
	Python Module Index

